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1. Introduction

In this paper we shall be concerned with the following problem.

Let A be an m x n matrix with m s n, and suppose that A is near (in

a sense +o be made precise later) a matrix B whose rank is less than

n. Can one find a set of linearly indapendent columns of A that ,pan

a good approximat'-n to the column space of B?

The solution of this problem is iq)p)rtant in a ntmber of applica-

tions. In this paper we shall be chiefly interested in the case whore

the columns of A represent factors or carriers in a linear model

which is to be fit to a vector of observations b. In some such applica-

tions, where the elements of A can be specified exactly (e.g. the

waalysis of variance), the presence of rank degeneracy in A can he

dealt with by explicit mathematical formlas and causes no essential

difficulties. In other applications, however, the presence of degeneracy

is not at all obvious, and the failure to detect it can result in meaning-

less results or even the cata'strophic failure of the numerical algorithms

being used to solve the problem.

The organization of this paper is the following. In the next sec-

tion we shall give a precise definition of approximate degeneracy in term

of the singular value decoixoition of A. In Section 3 we shall show

that under certain conditions there is associated with A a subspace

that is insensitive to how it is approximated by various choices of the

columns of A, aid in Section 4 we shall apply this result to the solution

of t. least squares problem. Sections 5, 6, and 7 will be concerned with

a,,Jrithms for selecting a basis for the stable subspace from mong the
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coltuns of A.

ThL ideas underlying our approach are by no means new. We use the

singular values of the matrix A to detect degeneracy and the singular

vectors of A to rectify it. The squares of the singular values are

the eigenvalues of the correlatinn matrix A'A, anx th right

singular vectors are the eigenvectors of ATA, tat is the principal

coponents of the problem. The use of principxal comonents to eliminate

colinearities has been proposed in the literature (e.g. se 14,9,16,171).

This paper extends these proposals in tuo ways. First we prove theorems

that express quantitatively the results of deciding that certain columns

of A can be ignored. Second we describe in detail how existing cfqpi-

tational techmiques can be used to realize our methods.

A word on notation is appropriate here. We have assumed a linear

moiel of the form b - Ax * e, where b is an r-vector of observations

and x is ut n-vector of parmeters. This is in contrast to the usual

.rtatstical notation it which the model is written in the form y =X,, + e,

where y is an n-vector of obsrvations and 1 is a p-vector of parmeters.

lkT reason for this is that we wish to draw on a body of tioreas aid

algorithms from numerical linear agebra that have traditionally been

couched in the first notation. We feel that this dichotWy in notation be-

tween statisticians and numerical analysts hes hindered ccamication

between the two grvips. Perhaps a partiat ",itstion to this problem is the

occasional appearance of notatior from nmrical analysis in statistical'

journals and vice versa, so that each gncop my have a chamice to learn the

other's notation.
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lroughout this paper we shall use two norms. "he first is the

Iuclide-an vector norm ,!o!i 2 defined for an n-vector x by

and its subordinate matrix norm defined by

"All =sup IlAX !,.i1x1 2=l

Th1 second is the Frobenius mtrix norm defined for the t , n matrix A by

i-i 1 

Both these noims are consistent in the sense that

!lAIll < i!Ai) B-I (p 2,F)

wnever the product AB is defined. They are also unitarily invariant;

that is if U and V are orthogonal matrices then

lAiip-iUTAIfp aAVIIp (p - 2,F).

For more on these matrix norms ree 1141.

2. Rank Degeneracy

The usual atheitical notion of rank is not very useful when the

mtsices in question are not known e actly. Fo example, suppose that A

is an m - n matrix that was originlly of rank r < n but whose elewmts

have been perturbed by some small errors (e.g. rounding or measurment

errors). It is extremely unlikely that these errors will conspire to

keep the rank of A exactly equal to r; indeed K4iat is most likely is
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th-it the perturbed matrix will have full rankn.N etlesth

nearness of A to a matrix of defective ran". %Ill often cause it to

behave erratically when it is subjected to statistical and nmerical

One way of circuventing the difficulties of the mathematical

definition of rank is to specify a tolerance and say that A is r~mmeri-

call>' defective in rank if to within that tolerance it is near a defectv.,

matrix. Specifically we might say that A has £.-rank r with respect

to tJ.c norm 11-11 if

(2.1) r --inf {rank(B): I!A-BI1!E cl&.

Hiowever, this definition has the defecl that a slight increase in

can decrease the nwierical, rank. What is needed is an upper bound on

the values of r for which the -vmuurical rank rmins at least equal to

r. SuAch a ntubw.r is provided by -wy number 6 satisfying

(2,2) tz:6 sup 1-n: IIIA-B11 - -n rank(B) > r).

Accordingly we make the following definition.

Definition 2.1. A vatrix A has maerical rank (6,c,r) with

resp-c, to the norm I11-11 if 8,s, and r satisfy (2.1) and (2.2).

Mebn the norm in definition 2.1 is either the 2-norm or the Frobenius

norm, the problem of determining the nmuerical rank of a matrix can be

solved in terms of the singular value decomposition of the matrix. This

decomi~isition, which has mny applications (e.g. see [71), is described in

the following theorem.



Tlherem 2.2. Let A he an m - n matrix with in n. Then there

is an orthogonal matrix U or order m and an orthogonal matrix V

of order n such that

(2.3)

where

and

For proofs of this theorem and the results cited below see [14]. The

numbers a1,&2,.. which are unique, are called the singular values
of A. The columns ulU 2,...,um of U are called the left singular

vectors of A, and the columns vlV 2,... ,v are called the right singular

vectors of A. The matrix A has rank r if and only if

(2.4) Or > 0 r+l

in which case the vectors ulU 2 ,.. ,u. r form an orthonoral basis for the

column space of A (hereafter denoted by R(A)).

It is the intimate relation of the singular values of a matrix to

its spectral and Frobenius norms that enables us to characterize numeri-

cal I nk in terms of singular *alues. Specifially the spectral norm of

A is given by the expression.

IA l2 =
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Nreover, if 1 " . t are the singular values of Hi A I, thenn

SlII 2  (i i,2,...,n).

In vieu of (2.4) this implies that

(2.5) inf M!A-BI r
rank(B)r 2 r1

and this infimu is actually attained for the mtrix 1 defined by

(2.6) - U i T ,

(0

where Z' = diag(alpa29.. ar,0,... P0).

Lik wise

2 2 2 2
llAiIF +a +02 + +...

-Ind

inf IiA-B1! a 2 + a2 .

rank () r

The infimum i attained for the mtrix B defined by (2.6).

Using these facts we can characterize the notion of numerical rank.

In the following theorem we use the notation rank (6,e,r) to mean numeri-
p

cal rank with respect to the nor !I-1I
p

Th-orem 2.3. Let a 2 _ ... an be the singular values of A.

"Thn A has numerical rank (icr)2 if and only if

(2.7) Or 6 > _r,1.
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Also A has numerical rank (8, ,r)F if and only if

2 2 02 2 22o+ + .. + a 6 --- >' ;-,Or +
n r rln I "" n"

Proof. We prove the result for the spectral norm, the proof for

the Frobenits norm being similar. First suppose that (2.7) holds. Then

by (2.5) if 1,B-A!J, < 6 we must have rank (B) :- r. Consequently .5 satis-

fies (2.2). This also shows that

min frank(B): !jB-AjI :s cl I> r.

But the matrix B of (2.6) is of rank r and satisfies IUA-B1 2 -E.

lkence s satisfies (2. 1).

Conversely, suppose 6,e, and r satisfy (2.1) and (2.2). Then

by (2.5), 6 E ar. Also c R! cr+l; for if not by (2.1) there is a matrix

B of rank r satisfying IIA-BII < or+I, which contradicts (2.5).n

Because of the simplicity of the characterization (2.7) we shall

restrict ourselves to rank defectiveness measured in terms of the spectral

nlorm,

We shall need two other facts about singular values in the sequel.

First define

(2.8) inf(A) inf :iA!,.

Then

inf(A) = n

where on is the smallest singular value of A. Second, let X and Y

be anY matrices with orthonormal columns and let T > be

J
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=Tthe singular values of C X AY. Then

(2.9) (i =1,2,...,k)

and

(2.10) "k- n-in+ (i z 1,2,...,k).

3. 'T'he c-Section of R(A)

having confirmed that a matrix A has numerical rank (5,e,r) 2

with r < n, one must decide what to do about it. If the singular value

decomposition has been computed as a preliminary to detcmining the

numerical rank, one solution naturally presents itself. This is to work

with the matrix B defined by (2.6). Because B hvas ar explicit repre-

sentation in terms of Z', the usual difficulties associated with zero singular

values can be avoided. Wreover, the solution so obtained is the exact

solution of a small perturbation of A.

However, this solution has the important defect that it does not

reduce the size of the problem. For example, if the problem at hand is

to approximate a vector of observations b, the procedure sketched above
will express the approximation as a linear combination of all the columns of

A, even though some of them are clearly redundant. What is needed is 3

device for selecting a set of r linearly independent columns of A.

In Sections 5 and 6 we shall discuss nmierical techniques for actually

making such a selection. In this section and the next we shall concern

ourselves with the question of when making such a selection is sensible.

"7e ,aL difficulty is that there are many different sets of r
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linearly independent columns of the matrix A, and not all these

sets may be suitable for the problem at hand. For example, if the

problem is again that of approximating a vector of observations b,

then for each set of columns we shall attempt to find a vector in

the subspace spanned by the columns that is in some sense a best

approximation to b. Now if the subspace determined by a set varies

widely from set to set, then our approximation to b will not be sta-

ble. Therefore, we turn to the problem of determining when these

subspaces are stable.

Ile shall attack the problem by comparing the subspaces with a

particular subspace that is determined by the singular value decomposition.

Let A have numerical rank (8,e,r). Let the matrix U in (2.3) be

partitioned in the form

U = (U ,l1,

where U has the r columns ul,U2 ,...,ur. Then we shall call R(U)

the s-section of R(A). Note that the &-section of R(A) is precisely the

columnn space of the matrix B defined in (2.6).

We shall compare subspaces in terms of the difference of the ortho-

gonal projections upon them. Specifically for any matrix X let PX

denote the orthogonal projection onto R(X). Then for two subspaces R(X)

and R(Y) we shall measure the distance between them by 1!P-Py., (for

the various geometric interpretations of this number, which is related

to canonical correlations and the angle between subspaces, see 11,2,131).

It is known that if Y has orthonormal columns and . has orthonormal
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columns spanning the orthogonal complement of R(X), then

(3.1) IIPx-PyII 2 = IIf TY112

The selection of r columns a. ,a i ,.. .,a . from the matrix

A = (a1,a2,...,an) has the following matrix interpretation. Let W

be the n x r matrix formed by taking columns il1i21",r from the n x n

identity matrix. Then it is easily verified that (ai a. ,...,a. ) = AW.
11 12 r

Of course wTw =1, so that V: has orthonormal columns, and this is all

that is needed for the following comparison theorem.

Theorem 3.1. Let A have numerical rank (5,c,r)2 and let U

be defined as above. Let W be an n x r matrix with orthonormal columns

and suppose that

(3.2) inf(AW) > 0,

where inf(X) is defined by (2.8). Then

_(3.3) lIPU -PAW1! 2 f- c/y
C

Proof. The matrix WTATAW is positive definite and hence has a

AT( T -112non.singular positive definite square root. Set Y = TATAW) I . It

is easily verified that Y has orthonormal columns spanning R(AW).

Moreover, from (3.2)

(3.4) i!(W TATAW)/ 2
2  y

The mtrix 6 also has orthonormal columns, and they span the orthogonalorhgoa



comp~lemen~ft of R(U~) It follows fronm (2.3) that

!T

- 112

b-- /. a/

Theorem 3.1 has the followring interpretation. The number y measures

the linear independence of the colmmns of AW. If it is small compared to

AW then the colums of AN themselves must be nearly dependent. This

Theorem 3.1 says that if we can isolate a set of r columns of A that
are strongly independent, then the space &ped by them mast be a good

approximation to the c-section R(U).

However, there are limits to how far we can go with this process.

By (2.8) the number Y satisfies ar Y v, and by the definition of nueri-

cal rank & ar+1. Consequently, the best ration we can obtain in (3.3) is

Or+l/a r . Thus the theorem is not very meaningful unless there is a ,ell

defined gap between or+l and o.. One cure for this problem is to in-

crease r in an attempt to find a gap; however, such a gap need not exist

(e.g. suppose ci+l = oi/2 (i - 1,2,..,n-1)). hat to d1 when the matrix

A exhibits a gradual rather than a precipitous decline into degeneracy

is a difficult problem, whose solution must almost certainly depend on

additional information.
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A second difficulty is that it may be impossible to obtain the

ideal ratio because in practice we must restrict our choice of W to

coltms of the identity matrix; i.e. we must choose from among columns

of A. That this is a real possibility is shown by the following example.

Example 3.2. Let e(n) denote the vector (1,,...,1) T with n

components. The matrix

A = T e(n)e(n)T

n n n

has singular values 1,,...,1,0, so that it has numerical rank (1,0,n-1) 2.

Thus we should like to remove a single column of An  to obtain an approxi-

mation to the 0-section of A. Owing to symmetry, it does not matter which

column we remove. If we remove the last one, the resulting matrix A.n

has the form

e(n)e(n-
1 ) T

nh n n

where 1Ln consists of the first n-l colms of the identity matrix.

Thus

e( n n- 1) n-)
e' (n- ) = [ en)> i (:(nl)'n /n rnT ( n I

(e(nl))

f win/nrh t n-
~from which it follows that
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[I

(n-1) _

and

y inf (A1 ) vi

It should be observed that the factor 1/ 2 exhibited in the

example is not extremely small. For n = 25 it is only 1/S. Unfortunately

no lower bound on y is known, although with the computational algorithms

to be described in Sections 5 and 6 it is easy enough to check the com-

puted value.

A final problem associated with Theorem 3.1 is that it is not

invariant under scaling. By scaling we mean the mnltiplicative scaling

of rows and colmns of A and not additive scaling such as the subtrac-

tion of means or a time factor from the colums of A (this latter

scaling can be handled by including the factors explicitly in the model).

Since by multiplying a colin by a sufficiently small constant one can

produce as small a singular value as one desires without essentially alter-

ing the model, Theorem 3.1 can be coaxed into detecting degeneracies that

are not really there. This means that one must look outside the hypo-

theses of Theorem 3.1 for a natural scaling. While we are suspicious of

pat scaling strategies, we think that the following criterion is reason-

able for ny applications. Specifically, the rows and columns of A

should be scaled so that the errors in the individual elements of A are



-14

as nearly as possible equal. This scaling has also been proposed in

[41, and an efficient algorithm for accomplishing it is described in

The rationale for this scaling is the following,. irom the defini-

tion of the singular value decomposition it follows that

Av1 i Oiui (i I,,.,)

Now if we imagine that our matrix is in error and that our true matrix

is A + E,- then

(3.6) (A.E)v 1 i Yiu + Ev.

If we have balanced ouir matrix as suggestod above, then all of the elements

of E are roughl~y the same size,, and IIEV111 i 11-1 Th! ifJi 5 102

equation (3.6) says that up to error v. is a null vector of A + E., and
i

the matrix is degenerate.

We recognize that this scaling criterion raises as many questions as

it answers. An important one is what to do when such scaling cannot be

achieved. Another question is raised by the observation that in regres-

Sion row scaling is equivalent to weighting observations, which amounts

to changing the model.* Is this justified simply to make Theorem 3.1

meaningful? Although this question has no easy answer, we should like to

p)oint out that it may be appropriate to use one scaling to eliminate

colincarities in A and another for subsequent regressibms.

We are indebted to John Chambers and Boy Wlsh for pointing this oit,
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In the next section we are going to examine the implications of

'LIhorem 3.1 for the linear least squares problem in which a vector of

observations b is optimally approximated 4.n the 2-norm by linear combina-

tions of the columns of A:

b a! Ax.

In some applications the 2-nora is not the best possible choice, and one

may wish to minirize V(b-Ax), where 0 is a function that may not even

be a norm. For example, in robust regression one approach is to minimize

a function that may reduce the influence of wi)d points. We shall not pur-

sie this subject here; but we believe that Theorem 3.1 has important impli-

cations for these problems. Namely, if we are searching for an approxi-

mation to b in R(A), we cannot expect the solution to be well determined

unless R(A) itself is. Theorem 3.1 provides a theoretical basis for

finding stable subspaces of R(A); hwever, specific theorems must wait

the development of a good perturbation theory for approximation in norms

other than the 2-norm.

4. The Linear Least Squares Problem

In this section we shall consider the linear least squares problem

(4,1) minimize 2-Ax 2

It is well known that this problem always has a solution, which is unique

if and only if A is of full column rank. At the solution, thz residual

vector

r b -Ax

:t : _ ; - -- :- : ,i- • ,, -, 
"

,= --i" -'i 
--

-----------------
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is the projection of b onto the oethogonal complement of R(A).

When A has numerical rank (rc,r)2, the solution to (4.1) may

be large, and some of the individual components of the solution will

certainly ,have large variances. If the ratio e/6 is sufficientl F

swill a stable solution can be computed by restrict' oneself to the

c-section of A. Computationally this can be done as follows. Define

U 1Md U as in Section 3, and further define

v- thv ,...,,v P v r .. Pn

and

Z = diag( . , a(ar+l...,n)

The, the matrix B of (2.6) is giver, by

B U 7, VT.

Moroover the vector

x =V L'-UTb

is the unique solution of the problem of minimizing

iib-BXlI 2

that is of miniaw 2-norm. It is easily seen that

r b-Ax =b-Bx.
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As we inaicated in the last section, this solution is not entirely

satisfactory, sine it involves all the colums of A, whereas we might

hope to obtain a ,atisfactory representation of b in terms of r

suitably chosen colums; that is with a model having only r carriers.

It is a consequence of Theorem 3.1 that any set of - reasonably inde-

pendent columns will do, although in practice additional considerations

my make some choices preferable to others.

Tleorem 4.1. Assuming the notation and hypothesis of Theorem 3.1,

let x and r. be defined as above. Let Y. be the solution of the

linear least squares problem

minimize Ib-Ayll 2

and let r, be the residual

r. b -AWYW

Then

Proof. By the j:.,rcirties of the least squares residual

r - (I-P )b and rW (I-PA)b. Hence

1ir.- r412 z 1I(PU -PA)bII 2 -- 11b!1 2 .o

Theorem 4.1 partially answers a question raised by Hotelling 1101;

namely if carriers are chosen to eliminate dependencies, what guarantees



-18-

that one such set will not fit b better than another? The answer is

that if there is a well defined gap between 6 and e, then any set of

r strongly independent columns will give approximtely the same resi-

dual. However, there remains the possibility that by including more

columns of A a considerably smaller residual could be obtained. We

stress that such a solution cannot be very stable. By (2.8) any matrix

consisting of more than r colums of A must have a singular value

less than or equal to e, and it follows from the perturbation theory

for the least squares problem [IS) that the solution must be sensitive

to perturbations in A and b. (Another way of seeing this is to note

that c is a lower bound for IRATA) 112, so that the solution must have

a large covariance matrix.)

i wever, one might be willing to put up with the instabilities in the

solution provided it gives a good approximation to b. We shall now show

that any solution that substantially reduces the rcsidual over r is not
C

only unstable, it is also large.

Theorem 4.2. Let r. be defined as above. Give, te vectnr x, let

r b - Ax. If NrII2 > 1lir2, then

Proof. Let z and let

LT

b()
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= T AT.Tan
where c is an n-vector. Then if we partition z (z,z) and

(cT T confomally with the previous partitions of U, V, and

2, we have

1r1 =IIUT (b-AW }x) 112

22 d

(IIc-zll I l12

-l jc- zll + Il -z 2

(4.e) El , elf.12 ze + c I C12lldi .

Consequently

(4.2) 2 > i 2+ 2
2 - E2 - id 2.

Now thevector y. '.T x is given by

so that

(4)2 2 2

From (4. 2)

IlI1 11c, 1
- c1 CIICt
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Hence

lix ll i11 112 2!

and from (4.3)

41ITg-1dI1 -1i Ai~di~ili

> IIrJ 2  " Iril2
C

The theorem shows that even a slight decrease in the residual must

result in a great increase in the size of the solution. It is hardly

necessary to add that a large solution is seldom acceptable in practice:

it oust have high variance, and it may be physically meaningless.

The results of this section have implications for a common practice

in data analysis, namely that of fitting a large xumsber of subsets of the

coluuns of A in an attempt to obtain a good fit with fewer than the full

complement of columis (for example, see [6]). We have, in effect, shown

that if the ratio E/8 is reasonable, this procedure is not likely to be

very productive. Any set of r independent columns will give about the

same residual, and any larger set that significantly reduces the residual

must produce an unacceptably large solution. There are, however, two cases

where this procedure might be of some help. First when it is hoped that

fewer than r columns can produce a good fit, and second when the &-6

ration is not very small. An approach to the second problem that uses the

singular valnie decomposition of the augmented matrix (A,b) is described

in [9) and [16,17].
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S. Extraction of Independent Columns: the QR Factorization

We now turn to the problem of extracting a set of numerically indc-

pendent columns. The first meth-J we shall consider is based on the QR

factorization of the matrix A. Specifically, if A is an m n nmatrix

with m :_ n, then A can be written in the form

A - QR,

where Q has orthonomal columns (QT Q-I) and R is upper triangular.

If A has full colmn rank, then the factorization is unique up to the

signs of the columns of Q and the corresponding rows of R. It should

be noted that the columns of Q for an orthonormal basis for R(A).

A knowledge of the QR factorization of A enables one to solve the

least squares problem (4.1). Specifically, any solution x of (4.1)

mst satisfy the equation

Rx = Q Tb,

which can be easily solved since R is upper triangular. Moreover, since

ATA RTR, we have

(ATA) 1 - R-lR-T

so that one can use the matrix R in the factorization to estimate the

cotariance matrix oi the solution.

An especially desirable feature of the QR factorization is that it

can be used to solve a truncated least squares problem in which only an
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initial set of colmns are fit. If Air denotes the matrix consisting

of the first r columis of A and Rir denotes the leading principal

submatrix of order r of A, then

(5.1) Air = QirRI.

Since R f  is upper triangular and Qlr has orthonormal columns,

equation (5.1) gives the QR factorization of Air and can be used as

described above to solve least sqiares problems involving Air.

Tho basis for using the QR factorization to extract a linearly

independent set of columns from the mtrix A is contoined in the

following theorem.

Therm 5.1. Let the QR factorization of A be partitioned in the

form

here A1 ,Q1 E nxr and R, I £rxr. If

1R221!2  E < 6 inf(R1 1 '.

then A has rank (6,&,r) 2 . boreover,

inf(A1 ) = 6.

Proof. Because the columns of Q are or :'onomal, the singular

values of A and of R are the same. Now 6 is the r-th singular

Wle of R IIIand hence by (2.9) 6 is less than or equal to the r-th
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singular value of A; i.e. or > 6. Likewise from (2.10), c _> %+ "

Thus A has rank (6,e,r). Moreover, since Q, has orthonormal columns,

inf(A1 ) = inf(QiRll) = inf(Rll) = 6.o

The application of this theorem is obvious. If, after having

computed the QR factorization of A, we encounter a small matrix R2 2

and a matrix Rl with a suitably large infinum, then the columns of

A1  span a good approximation tc the r-section of A. Because

of (5.1), we have at hand the QR factorization of A1 and can proceed

immediately to the solution of least squares problems involving A1.

There remain two problems. First how can one insure that the first r

columns of A are linearly independent, and second how can one estimate

inf(R11) ?

The soluLion to the first problem depends on the method by which the

QR faztorization is computed. Probably the best numerical algorithn is

one based on Householder transformations in which the QR factorizations

Alk = QIkRFk are s-omputed successively for k = 1,2,...,n (e.g. see 1141).

At the k-th step, just before QIk and R are computed, there is.the

possibility of rep .acing the k-th column of A by one of the columns

.. ,a If the column that maximizes the (k,k) - element of

t is chosen to replace ak, then there will be a tendency for ijxepen-

dent columns to be processed first, leaving the dependent columns at the

end of the matrix. An ALGOL program incorpo: .. ng this "column pivoting"

is given in [3] and a FORTRAN program is given in [11].



-24-

Once a satisfactory QR decomposition has been calculated, we can

estinate OR22112 by the bound

where

k [IIIl = Max 1 xij I
. j j i J

and

RlXI. = max 2: 1xi.

i j '3

Likewise one can estimate irf(R11) by computing RI (an easy task

since R is upper triangular) and using the relations

inf(R2 1
inf(R1 ) =111 2  _______

The procedure sketched above is completely reliable in the sense

that it cannot fool one into thinking a set of dependent columns are

independent. h1owever, it can fail to obtain a set of linearly indepen-

dent columns, as the following example shows.

I'xzpje 5.2. Let An be the matrix of order n • illustrated below

for n 5:
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1 -W/Z 1i~ -/4 -1/4S0 1/

A = 0 0 iI' -ll, -1/,'S

0 0 0 0 -/IS

Letting xn (1,/2/2,v/4,/8,...,vii/2n'), it is easily verified that

Ax = 2ne
nn

',,

where e = 1,...,l). Thus An has the approximate null vector xn

and must have nearly dependent columns. However, computing the QR factori-

zation of A,1, even with column pivoting, leaves AN  undisturbed. Since

no element of An is very small, we shall have R22 void; i.e. no depen-

dent column will be found.

It should be observed that in the above example there is no danger

of the degeneracy in An going undetected. Since R22  is void, Rl, m An

and any attempt to estimate inf(R11 ) will reveal the degeneracy.

It may be objected that the matrix An in Example 5.2 shows an

obvious sign of degeneracy; viz,. its determinant (n!) "1/ 2 goes rapidly

to zero with increasing n. However, the matrix (AnJ, obtained from An

by taking the absolute value of its elements, has the same determinant

yet its columns are strongly independent. Thus the example confirms a

fact well known to practical computers: the value of a determinant is

worthless as an indication of singularity.
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b. Extraction of Independent Columns: the Singular Value Decomposition

When the singular value decomposition of A has been computed (an

AW)0L program is given in [8] and a FORTRAN program in [111), a different

way of selecting independent columns is available. The method is based on

the following .heorem.

Theorem 6.1. Let A have the singular value decomposition

HT~
U1AV=

Let V be partitioned in the form

C 2 & 2

where V l is r r, and let A be partitioned in the form

A x (A1 ,A2 ),

where A has r columns. Let 6 ar, =or+ and

y f inf(Vl).

Then A has numerical rank (6,,,r)2 and

(6.1) infA1 ) - y.

Proof. The fact that A has numerical rank (6,e,r)2 follows

immcdiately from Theorem 2.3. To establish (6.1), observe that if we

write
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AV S = (SPS2 )

where S has r columns, thenS 1S O. N sinceA SV we have
1~~~~~~~ 2 .0 osne-Vwh

Al= S T TJ

Since sT = 0,1 20

ar inf(Vci) =

As with the QR factorization, Theorem 6.1 provides us with a way of

determining when an initial set of r columns of A are independent.

Since an initial set may be degenerate, we must adopt some kind of inter-

change strategy to bring an independent set of columns into the initial

positions. If P is any permutation matrix, then

: ~~~U T(Ap) pT)= Z '

so that in the singular value decomposiLion an interchange of columns of

A corresponds to an interchange of the corresponding rows of V. This

sugg'nsts that we exchange rows of V until inf(Vcl) becomes acceptably

large. One way of accomplishing this is to start with the r x n matrix

ST ,Tv (Ve,'Ve)

and compute its QR factorization with column pivoting to force a set

of independent columns into the first r positions. Alternative.) one
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could aP.ply an algorithm such as Gaussian elimination with complete

pivoting to V, (e.g. see [14]).

If either of the above suggestions is followed, the final matrix

vT will be upper triangular, and its infimrnzm can be bounded by the method

suggested in the last section.

If r is small, significant savings can be obtained by observing

that the singular values .n [0,1) of V l and V 2 are the sane (see

the appendix of [15] for a proof). Thus one can start with the smaller

matrix

(6.2) A= OT IT -
2 W e2

and use the QR factorization with column pivoting to determine the

dependent columns of A. Note that when r = n-1 the column to be stricken

corresponds to the largest element of the row vector V2.
The question of whether to use the QR factorization or the singular

value decomposition is primrily one of computational efficiency. Although

Example 5.2 shows that the QR factorization can fail to isolate a set of

independent columns in a case where the singular value decomposition does,

this is an unusual phenomenon (see Example 7.2) and in most cases the QR

factorization with colin pivoting is effective in locating independent

columns. When m is not too much greater than n, the calculation of the

singular value decomposition is considerably more expensive than the

calculation of the QR factorization, and it is more efficient to stick with

the latter, if possible.
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When m > n, we can begin by computing the QR factorization of A.

The matrix R has the sae singular values as A, and indeed if

(6.3) 0TR = z

is the singular value decomposition of R, then V is the matrix of

right singular vectors of A. Since R is an n x n matrix, the reduc-

tion (6.3) is computationally far less expensive than che initial com-

putation of R, and there seems to be no reason not to use the singular

value decomposition.

7. Examples

In this section we shall give some examples illustrating the pre-

ceding material. The numrical computatien. were done in double precision

on an IBM 360; i.e. to about sixteen decimal digits.

Example 7.1. This example has been deliberately chosen to be un-

complicated. For fixed n, let

H naI eeT

where eT - (l,',...,I). It is easily verified that Hn  is orthogonal.

Let

a diag(1,1,1,1,1,O,0,0,0,0)

and

A H )0 H10.
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Then A has five nonzero singular values equal to unity and five zero

singular values, and thus it should have five linearly independent

columns.

The singular values of A were computed to be 1,1,I,1,1,.35xl - 1R)

(,0,0,0, so that A can be regarded as having rank (I,F,S) where

= 10- 16 . The pivoting strategy described in Section 0 was used to

isolate a set of five linearly independent columns. These turned out to

be columns 1,2,4,5, and 9. The associated rmatrix V had an infinmm

of .45 which is very close to the optimal value of unity. As a final

check, we compute 1P, -P,!,, where W = (el,e 2,e4 ,es,e 9 ) is the matrix

that selects the independent columns from A (cf. Theorem 3.1). The

result is

lipU -PAWII 2 a .37 x 10-14,
C

which shows that colums 1,2,4,5, and 9 of the matrix A almost exactly

span the &-section of A.

The QR factorization with column pivoting that is described in Sec-

tion 5 was also applied to A. The pivot colums and their norms were

5 .89
4 .86
2 .81
3 .71
6 .44 -16
1 .45 x 10.30
7 .13 x10
8 0
9 0

10 0
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If the gap is taken to lie after the fifth vector we have

inf(R1) 1, 1R22112 = .20 x 1016.

It
Thus the QR factorization exhibits the same sharp gap as the singular

value decomposition. However, the five columns 2,3,4,5, and 6 desig-

nated as independent are different from those chosen by means of the

singular value decomposition. Nonetheless, for W - (e2,e3,e4,e,,e,)

we have

1iPU -PAWl1 - .37 x 10- 1 4 ,

so that this choice of columns is as good as the one predicted by the

singular value decomposition.

Incidentally the estimate of 11R 22112 using the 1- and --norms i-

Y1R, 211 1IR22 .- .94 x 1016,

which is not a gross overestimate.

Example 7.2. This is the matrix A2S of Example 5.2. The singular

values of this matrix are

a =3.7,a2-1.6,.. ,24=.51,a25-.77 x 10"7

Again there is a well defined gap, and we may take A to have raIk

(.31,c,24) where r - 10" . This time there is only a single dependent

vector whichs:an be found by looking for the largest component of the

right singular vector v25 corresponding to a2S (cf. the comments at

equation (6.2)). This component, .75, is the first, which indicates
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that column one should he discarded. 1!or this selection we have

'-7
11PU -PAW112 - .49 x 10" 7 .

C

In principle, the QR factorization should fail to isolate a depen-

dent column of A. However, because the elements of A25 were

entered with rounding error, the pivot order with colum norms turned

out to be

1 1.0
25 .98
6 .88

24 :37
2 .15 X 10"16

This again gives a well defined gap and indicates that colum 2 should

be thrown out (the second component of v2S is .53 so that also from the

point of view of the singular value decomposition the second column is

a candidate for rejection). For this subspace we have

iIPU -PAW1] = .11 x 10"6.

Thus the QR factorization gives only slightly worse results than the

singular value decomposition, in spite of the fact that the example was

concocted to make the QR decomposition fail. 0

xample 7.3. To show that our theory may be of some use even where

there is not a sharply defined gap in the singular values, we consider the

Longley test data [12], which has frequently been cited in the literature.
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Since it is a common practice to subtract means from raw data, we have

included a column of ones in the model. Specifically the columns of

A are as follows:

1 -- ones

2 -W- Im4P Imlicit Price Deflator, 19S4 - 100

3 -G- iP

* 4 -- unemployment

5-- Size of armed forces

6 -- Noninstitutional population z 14 years old

7 -- Time (years)

The scaling of this data will critically affect our results. For the

pu- poses of this experiment we assume that columns two through six are

known to about three significant figures. Accordingly each of these

columns was multiplied by a factor that made its mean equal to 500.

The column of ones is known exactly and by the equal error scaling

criterion ought to be scaled by a factor of infinity. As an approxima-

tion we took the scaling factor to be 1010.

The colum of years can be treated in twc ways. First the errors in

the time of measurement can be attributed to the column itself, which

would result in the column being assigned a low accuracy. However, we

observe that any constant bias in the time of measurement is accounted

for by the column of ones, and any other errors can be attributed to the

meastired data. Co-nsequently we have preferred to regard the years as

known exactly and scale the seventh column by 1010.

The singular values of the matrix thus scaled ar.
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.78 x 1014

.94 x 108

.58 X 103

.26 x I03

.26 x 102

.22 x 102

.51 x 101

Since the error in A is of order unity, ;he last singular value must

be regarded as pure noise, and we may take A 7o have rank (22,5.1,6)2.

The largest component of the seventh singular vector is the sixth and has

a value of .90. When the sixth column is removed from the matrix, the

resulting subspace compares with U 5.1 as follows:

1P11  -PAWII 2 = .12.

5.1

le relatively poor determination of the S.-section of A suggests

that not mnich useful informtion can be obtainei from a least squares

fit, even when the sixth column is ignored. 11; next gap that presents

itself is between the fourth and fifth singular ,alues. If we regard A

as having rank (260,26,4)2 and use the pivoting strategy of Section 6 to

isolate a set of four independent colums, we choose columns 1,4,5, and 7

with

inf(V.1) = .991.

For this choice of columns

S60 -A 0. 011,
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a far more satisfactory result.

If the QR factorization is applied to A, there results the follow-

ing sequence of pivot columns and norms:

7 .78 x 1014

1 .94 x 10
8

5 .47 x 10

4 .31 x 103

2 .24 x 102

3 .21 x 102

6 .57 x 101

This agrees completelywith the results from the singular value decomposi-

tion. Either one or three columns should be discarded, and columns 6, 2,

and 3, in that order, are candidates.

Although these results indicate that t.olums 2, 3, and 6 should be

discarded from the model, they are not conclusive, since there may be

othjer sets containing some of these colums that give a satisfactory

approximtion to the 260-section of. A. However, a singular value decomp,.s-

ition of the mtrix consisting of colums 1,2,3,6, and 7 gives the singular

values

.78 x 1014

.9d x 108

.50 x 102

.25 x 102

.10 x 102

which shows that none of these columns is a really good candidatu, for inclu-

sion in the model.
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To stmn up: if the raw Longley data is taken to We accurate to thre.

significant figures, if years are assumed to be exact, and if means are

suhtractL' from the columns, then the column corresponding to noninstitu-

tional population is redundant, and the columns corresponding to the GNP

iqdlicit price deflator and iie MP are so nearly redundant that their

inclusion in the model will affect the stability of the residuals from any

regress ions.
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